Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
2.
Virol J ; 20(1): 14, 2023 01 25.
Article in English | MEDLINE | ID: covidwho-2214604

ABSTRACT

BACKGROUND: Viral shedding and neutralizing antibody (NAb) dynamics among patients hospitalized with severe coronavirus disease 2019 (COVID-19) and immune correlates of protection have been key questions throughout the pandemic. We investigated the duration of reverse transcriptase-polymerase chain reaction (RT-PCR) positivity, infectious viral shedding and NAb titers as well as the association between NAb titers and disease severity in hospitalized COVID-19 patients in Denmark 2020-2021. MATERIALS AND METHODS: Prospective single-center observational cohort study of 47 hospitalized COVID-19 patients. Oropharyngeal swabs were collected at eight time points during the initial 30 days of inclusion. Serum samples were collected after a median time of 7 (IQR 5 - 10), 37 (IQR 35 - 38), 97 (IQR 95 - 100), and 187 (IQR 185 - 190) days after symptom onset. NAb titers were determined by an in-house live virus microneutralization assay. Viral culturing was performed in Vero E6 cells. RESULTS: Patients with high disease severity had higher mean log2 NAb titers at day 37 (1.58, 95% CI [0.34 -2.81]), 97 (2.07, 95% CI [0.53-3.62]) and 187 (2.49, 95% CI [0.20- 4.78]) after symptom onset, compared to patients with low disease severity. Peak viral load (0.072, 95% CI [- 0.627 - 0.728]), expressed as log10 SARS-CoV-2 copies/ml, was not associated with disease severity. Virus cultivation attempts were unsuccessful in almost all (60/61) oropharyngeal samples collected shortly after hospital admission. CONCLUSIONS: We document an association between high disease severity and high mean NAb titers at days 37, 97 and 187 after symptom onset. However, peak viral load during admission was not associated with disease severity. TRIAL REGISTRATION: The study is registered at https://clinicaltrials.gov/ (NCT05274373).


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Antibodies, Neutralizing , Prospective Studies , Antibodies, Viral
3.
Commun Med (Lond) ; 2: 114, 2022.
Article in English | MEDLINE | ID: covidwho-2028735

ABSTRACT

Background: The immune pathogenesis underlying the diverse clinical course of COVID-19 is poorly understood. Currently, there is an unmet need in daily clinical practice for early biomarkers and improved risk stratification tools to help identify and monitor COVID-19 patients at risk of severe disease. Methods: We performed longitudinal assessment of stimulated immune responses in 30 patients hospitalized with COVID-19. We used the TruCulture whole-blood ligand-stimulation assay applying standardized stimuli to activate distinct immune pathways, allowing quantification of cytokine responses. We further characterized immune cell subsets by flow cytometry and used this deep immunophenotyping data to map the course of clinical disease within and between patients. Results: Here we demonstrate impairments in innate immune response pathways at time of COVID-19 hospitalization that are associated with the development of severe disease. We show that these impairments are transient in those discharged from hospital, as illustrated by functional and cellular immune reconstitution. Specifically, we identify lower levels of LPS-stimulated IL-1ß, and R848-stimulated IL-12 and IL-17A, at hospital admission to be significantly associated with increasing COVID-19 disease severity during hospitalization. Furthermore, we propose a stimulated immune response signature for predicting risk of developing severe or critical COVID-19 disease at time of hospitalization, to validate in larger cohorts. Conclusions: We identify early impairments in innate immune responses that are associated with subsequent COVID-19 disease severity. Our findings provide basis for early identification of patients at risk of severe disease which may have significant implications for the early management of patients hospitalized with COVID-19.

4.
APMIS ; 130(9): 590-596, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1909331

ABSTRACT

Ferritin, the central iron storage protein, has attracted attention as a biomarker of severe COVID-19. Few studies have investigated regulators of iron metabolism in the context of COVID-19. The aim was to evaluate biomarkers for iron metabolism in the acute phase response to community-acquired pneumonia (CAP) caused by SARS-CoV-2 compared with CAP caused by bacteria or influenza virus in hospitalized patients. A cross-sectional study of 164 patients from the Surviving Pneumonia Cohort recruited between January 8, 2019 and May 26, 2020. Blood samples were collected at admission and analyzed for levels of C-reactive protein (CRP), ferritin, soluble transferrin receptor, erythroferrone, and hepcidin. Median (IQR) hepcidin was higher in SARS-CoV-2 with 143.8 (100.7-180.7) ng/mL compared with bacterial and influenza infection with 78.8 (40.1-125.4) and 53.5 (25.2-125.8) ng/mL, respectively. The median ferritin level was more than 2-fold higher in patients with SARS-CoV-2 compared with the other etiologies (p < 0.001). Patients with SARS-CoV-2 had lower levels of erythroferrone and CRP compared with those infected with bacteria. Higher levels of hepcidin and lower levels of erythroferrone despite lower CRP levels among patients with SARS-CoV-2 compared with those infected with bacteria indicate alterations in iron metabolism in patients with SARS-CoV-2 infection.


Subject(s)
COVID-19 , Community-Acquired Infections , Influenza, Human , Pneumonia, Bacterial , Pneumonia, Viral , Biomarkers/blood , C-Reactive Protein/metabolism , COVID-19/complications , Community-Acquired Infections/blood , Community-Acquired Infections/diagnosis , Cross-Sectional Studies , Ferritins , Hepcidins/metabolism , Humans , Influenza, Human/complications , Iron/metabolism , Pneumonia, Bacterial/blood , Pneumonia, Bacterial/diagnosis , Pneumonia, Viral/blood , Pneumonia, Viral/diagnosis , SARS-CoV-2
5.
Int J Obes (Lond) ; 46(4): 817-824, 2022 04.
Article in English | MEDLINE | ID: covidwho-1607588

ABSTRACT

BACKGROUND: Different pathogens can cause community-acquired pneumonia (CAP); however, the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease 2019 (COVID-19) has re-emphasized the vital role of respiratory viruses as a cause of CAP. The aim was to explore differences in metabolic profile, body composition, physical capacity, and inflammation between patients hospitalized with CAP caused by different etiology. METHODS: A prospective study of Danish patients hospitalized with CAP caused by SARS-CoV-2, influenza, or bacteria. Fat (FM) and fat-free mass (FFM) were assessed with bioelectrical impedance analysis. Physical activity and capacity were assessed using questionnaires and handgrip strength. Plasma (p)-glucose, p-lipids, hemoglobin A1c (HbA1c), p-adiponectin, and cytokines were measured. RESULTS: Among 164 patients with CAP, etiology did not affect admission levels of glucose, HbA1c, adiponectin, or lipids. Overall, 15.2% had known diabetes, 6.1% had undiagnosed diabetes, 51.3% had pre-diabetes, 81% had hyperglycemia, and 60% had low HDL-cholesterol, with no difference between groups. Body mass index, FM, and FFM were similar between groups, with 73% of the patients being characterized with abdominal obesity, although waist circumference was lower in patients with COVID-19. Physical capacity was similar between groups. More than 80% had low handgrip strength and low physical activity levels. Compared to patients with influenza, patients with COVID-19 had increased levels of interferon (IFN)-γ (mean difference (MD) 4.14; 95% CI 1.36-12.58; p = 0.008), interleukin (IL)-4 (MD 1.82; 95% CI 1.12-2.97; p = 0.012), IL-5 (MD 2.22; 95% CI 1.09-4.52; p = 0.024), and IL-6 (MD 2.41; 95% CI 1.02-5.68; p = 0.044) and increased IFN-γ (MD 6.10; 95% CI 2.53-14.71; p < 0.001) and IL-10 (MD 2.68; 95% CI 1.53-4.69; p < 0.001) compared to patients with bacterial CAP, but no difference in IL-1ß, tumor necrosis factor-α, IL-8, IL-18, IL-12p70, C-reactive protein, and adiponectin. CONCLUSION: Despite higher inflammatory response in patients with COVID-19, metabolic profile, body composition, and physical capacity were similar to patients with influenza and bacterial CAP.


Subject(s)
COVID-19 , Influenza, Human , Pneumonia , Bacteria , Body Composition , COVID-19/complications , COVID-19/epidemiology , Hand Strength , Humans , Influenza, Human/complications , Influenza, Human/epidemiology , Metabolome , Prospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL